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Abstract

This paper presents an accurate methodology to determine heat transfer coefficients near the thermal entrance region of ducts. These
include parallel plate channels, circular pipes and rectangular passages. The solution technique uses a classical Airy differential equation
when the thermal penetration is small. The validation and verification of these solutions are the essential part of this presentation as they
are compared with available solutions. The results show a high degree of accuracy when the thermal entrance distance is very small. Also,
this paper discusses the range of validity of this solution since its accuracy reduces at a larger distance from the thermal entrance location.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Solutions for heat transfer with laminar fluid flow in dif-
ferent passages and under different wall conditions are
available in the literature [1,2]. Generally, series solutions
are used to compute the heat transfer in the thermally
developing regions [3–5]. These solutions have a conver-
gence limitation and will not provide sufficient accuracy
near the thermal entrance location. Typically, the Nusselt
number is known at different values of ðx=DhÞ=ðReDPrÞ
for flow through various ducts where the Prandtl number
Pr ¼ lcp=k, the Reynolds number ReD ¼ qUDh=l, U is
the average velocity, and Dh is the hydraulic diameter.
The minimum values from available information can pro-
vide heat transfer data at small values of ðx=DhÞ when
ReDPr is also small but larger than �10. However, in many
applications, the value of ReDPr for laminar flow is rela-
tively large and, therefore, it is difficult to obtain the local
heat transfer information at small values of ðx=DhÞ. As an
example, for rectangular passages, the average Nusselt
number is given in [3, Table 9-9] for ðx=DhÞ=ðReDPrÞP
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijheatmasstransfer.2007.01.028

* Corresponding author. Tel.: +1 817 272 2010; fax.: +1 817 272 2952.
E-mail address: haji@uta.edu (A. Haji-Sheikh).
0:01. When ReDPr ¼ 500, these data do not provide ade-
quate information for ðx=DhÞ < 5, an important range for
cooling the microelectronic devices. Accordingly, there is
a need for a relatively accurate knowledge of heat transfer
near the entrance locations; especially, when ReDPr is rela-
tively large. It should be noted that the present analysis is
restricted to negligible axial conduction but the same con-
cepts have potential for treating axial conduction.

The main objective of this study is to provide a method
that yields accurate asymptotic temperature solutions when
x is very small. A comparison between this solution and the
one obtained by the exact series solution, at larger values of
x, validates its accuracy. The following analysis begins by
considering the wall to be flat when the thermal penetration
distance is small relative to the radius of the curvature of
the wall. This makes the heat transfer within a parallel
plate channel a primary candidate and the extension of this
methodology to other geometries follow in a straightfor-
ward manner. Accordingly, this is demonstrated by apply-
ing it to circular pipes and then to rectangular ducts.

The physical problem has a very short penetration dis-
tance normal to the wall, designated as y. In regions of
steep changes followed by negligible penetration, series
solutions have great difficulty. This suggests a modified
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Nomenclature

A area, m2

a; b channel dimensions, m
�b b=a
C velocity slope, s�1

C effective dimensionless slope, see Eq. (35)
C1;C2 coefficients
Dh hydraulic diameter, m
Fn eigenfunctions
h local heat transfer coefficient W=m2 K
�h average heat transfer coefficient, W=m2 K
k thermal conductivity, W=m K
NuD Nusselt number, hDh=k
NuD average Nusselt number, �hDh=k
p pressure, Pa
Pe Peclet number, Ua=a or Uro=a
Pr Prandtl number, lcp=k
q heat flux, W=m2 K
qw wall heat flux, W=m2 K
ReD Reynolds number, qUDh=l
r radial coordinate
ro pipe radius, m
T temperature, K
Tb bulk temperature, K
Ti inlet temperature, at x ¼ 0, K

Tw wall temperature, K
u velocity, m/s
U average velocity, m/s
x axial coordinate, m
x̂ ðx=aÞ=Pe
y; z coordinates, m

Greek symbols

a thermal diffusivity, m2/s
bn eigenvalues in Eq. (31a)
c parameter, Eq. (38)
e percent deviation, Eq. (20)
h ðT � T iÞ=ðT w � T iÞ
l fluid viscosity, N s/m2

q density, kg/m3

U ðT � T iÞ=ðqwa=kÞ
w coefficient, Eq. (39b)

Subscripts

b bulk
i inlet
L large x

S small x

w wall
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physical problem and a different method of solution. Since
the temperature penetration is so small in the y-direction,
the velocity distribution can be modeled as being linear
with y. Moreover, the temperature distribution becomes
locally a function of just x and y (even for rectangular
cross-sections, for example) and the fluid can be modeled
as being infinite in the y-direction. This heat transfer prob-
lem can be solved in closed form which does not involve
infinite series and yet is much more accurate than the series
solution as x goes to zero.

2. Analysis using Airy differential equation

This derivation is limited to the case when flow is hydro-
dynamically fully-developed and axial conduction is negli-
gible. At a very small distant from the thermal entrance
location in a duct having a constant wall temperature,
the fluid temperature is affected only very near the wall.
Therefore, it is appropriate to let the coordinate measured
from the wall be denoted y and the coordinate in the direc-
tion of flow be denoted x. For the steady state case, the
energy equation can be written as

a
o2T
oy2
¼ u

oT
ox

ð1Þ

For points near the wall, the velocity is modeled as being
linear with distance from the wall, y. Then, the velocity
near the wall can be written as
u ¼ Cy; C ¼ ou
oy

����
y¼0

ð2Þ

For fully-developed flow, Eq. (1) becomes

a
o2T
oy2
¼ Cy

oT
ox

ð3aÞ

For an isothermal wall, the boundary conditions are

T ðx; 0Þ ¼ T w; T ð0; yÞ ¼ T i; T ðx;1Þ ¼ T i ð3bÞ

This differential equation is similar to that for heat transfer
in Couette flow as discussed in [7]. However, the boundary
conditions and the method of solution are different. Kestin
and Persen [8] solved a similar problem for turbulent flow
when the temperature change is confined within the lami-
nar sublayer. They developed a similarity solution [8, Eq.
(13)] and the resulting differential equation was solved. In
following formulation, for a small-x solution, the Laplace
transform technique reduces the partial differential equa-
tion to a classical ordinary differential equation with a
known solution.

The next step is to find a solution for Eq. (3a)
with boundary condition as given by Eq. (3b). In dimen-
sionless form, let hðx; yÞ ¼ ½T ðx; yÞ � T i�=ðT w � T iÞ and this
makes

a
o

2h
oy2
¼ Cy

oh
ox

ð4Þ
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with boundary conditions of

hðx; 0Þ ¼ 1; hð0; yÞ ¼ 0; hðx;1Þ ¼ 0

Now, taking the Laplace transform with respect to x of
Eq. (4) results in the relation

a
d2�h
dy2
¼ Cys�h ð5Þ

where �hðs; yÞ is the Laplace transform with respect to x of
hðx; yÞ. To change the variables, let

g ¼ y
Cs
a

� �1=3

or y ¼ g
a

Cs

� �1=3

ð6Þ

and then introducing g into Eq. (5) gives

a
a

Cs

� �2=3

d2�h
dg2
¼ Cg

a
Cs

� �1=3

s�h ð7Þ

that reduces to

d2�hðgÞ
dg2

¼ g�hðgÞ ð8Þ

and its boundary conditions, as given for Eq. (4), are now

�hð0Þ ¼ 1

s
; �hð1Þ ¼ 0 ð9Þ

Eq. (8) is recognized to be the Airy ordinary differential
equation [6, p. 446]. The general solution of Eq. (8) is

�hðgÞ ¼ C1AiðgÞ þ C2BiðgÞ ð10Þ
Now, the coefficient Ai(0) is a constant and AiðgÞ ¼ 0 as
g!1. Also, since Bið1Þ ¼ 1, using the condition at
g ¼ 1 gives C2 ¼ 0 and from the condition at g ¼ 0, one
gets

1

s
¼ C1Aið0Þ or C1 ¼

1

sAið0Þ ð11Þ

Hence, the solution to Eq. (8) with boundary conditions
from Eq. (9) is

�hðgÞ ¼ 1

sAið0ÞAiðgÞ ð12Þ

Now, for the determination of the heat transfer coeffi-
cient, the heat flux at the wall is needed, that is

�qð0; sÞ ¼ �k
d�T
dy

����
y¼0

¼ � kðT w � T iÞ
a

Cs

� �1=3

d�h
dg

����
g¼0

¼ � k
a

Cs

� �1=3

ðT w � T iÞ
sAið0Þ

dAi
dg

����
g¼0

¼ � kðT w � T iÞ
s3=2

C
a

� �1=3 Ai0ð0Þ
Aið0Þ ð13Þ

Taking the inverse Laplace transform of Eq. (12) yields the
same temperature field as that in [8],

hðy; xÞ ¼ C½1=3; y3C=ð9axÞ�
Cð1=3Þ ð14aÞ
and the heat flux at the wall after a Laplace transform
inversion of Eq. (13) is

qð0; xÞ ¼ �kðT w � T iÞ
C
a

� �1=3 Ai0ð0Þ
Aið0Þ

x�1=3

Cð2=3Þ

¼ � kðT w � T iÞ
Cð2=3Þ

Ai0ð0Þ
Aið0Þ

C
ax

� �1=3

¼ kðT w � T iÞ
Cð1=3Þ

3C
ax

� �1=3

ð14bÞ

In this relation, the parameter C is the slope in the velocity
at the wall.

2.1. Application to parallel plate ducts

For flow between parallel plates, the fully-developed
velocity distribution is

u
U
¼ 3

2
2

y
a

� �
� y

a

� �2
	 


ð15Þ

where a is the channel half-width. The derivative of u with
respect to y and evaluated at y ¼ 0 is

du
dy

����
y¼0

¼ 3
U
a

ð16Þ

and therefore, C ¼ 3U=a, in this case. Introducing this
value of C into Eq. (14b) gives

qð0; xÞ ¼ kðT w � T iÞ
Cð1=3Þ

9U
aax

� �1=3

¼ 32=3

Cð1=3Þ
U
aax

� �1=3

kðT w � T iÞ ð17Þ

The heat transfer coefficient is contained in the heat flux
equation,

qð0; xÞ ¼ hðT w � T bÞ ¼ hðT w � T iÞð1� hbÞ ð18Þ

where Tb is the bulk temperature; for this case at very near
the entrance, the bulk temperature Tb or hb is nearly equal
to zero. Then, equating Eqs. (17) and (18) yields,

32=3

Cð1=3Þ
U
aax

� �1=3

kðT w � T iÞ ¼ hðT w � T iÞð1� hbÞ

and when hb ffi 0, this yields the following expression for
the heat transfer coefficient

hð2aÞ
k
¼ 2� 32=3

Cð1=3Þ
Ua2

ax

� �1=3

¼ 1:5529
Ua2

ax

� �1=3

ð19aÞ

or

NuD ¼
hDh

k
¼ 3:106

ðx̂Þ1=3
ð19bÞ

since the parameter ðaxÞ=ðUa2Þ is designated as x̂ ¼ ðx=aÞ= Pe
wherein Pe ¼ ða=DhÞReDPr. It is significant that the above
analysis relates the heat transfer coefficient to the axial
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Fig. 1. Percent deviations for near entrances solution, Eq. (19b), and for
new correlations for NuD, Eq. (21), and NuD, Eq. (23a), as a function of x̂
in parallel-plate channels.
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distance to the �1/3 power; the series solutions do not pro-
duce such a simple result.

Now, it is appropriate to compare this solution with the
existing Graetz type series solution data in Table 1, as they
appear in [9]. As an illustration, when the dimensionless
axial coordinate ðx=DhÞ=ðReDPrÞ ¼ 0:000005, the Nusselt
number NuD ¼ hDh=k is 71.830 in [9]. Since Dh ¼ 4a, for
the case of

Ua
a

a
x
¼ 0:000005

Dh

a

� �2

¼ 0:00008

the value of NuD ¼ 2� 36:04 ¼ 72:08, from Eq. (19b),
compares well with 71.83 with a deviation of 0.49%. Next,
it is desirable to compare graphically this solution to an ex-
act series solution. Although the convergence of a series
solution is demanding at very small values of x̂, it can pro-
vide solutions with high degrees of accuracy at intermedi-
ate values. Fig. 1 provides the percent deviation

e ¼ ðNuDÞS � ðNuDÞL
ðNuDÞL

� 100% ð20Þ

between the exact series solution designated as ðNuDÞL and
the small-x solution designated as ðNuDÞS. This percent
deviation appears as a dash line with diamond-shaped sym-
bols; it is small at small values of x̂ and shows a tendency to
go toward zero at x̂ goes to zero. This small deviation
emerges because the linear velocity in Eq. (3a) is slightly
larger than the actual velocity within the thermal penetra-
tion region. However, there is another small deviation,
due to the selection of hb ¼ 1, in the opposite direction.
Then, it begins to influence the value of Nusselt number
and causes a rapid reduction as x̂ increases beyond 10�4.
Table 1
Comparison of data from Eqs. (21) and (24) with the exact series solutions
of local and average Nusselt numbers for flow through parallel plate
channels

x̂ða=DhÞ2 NuD

[9]
NuD

Eq. (21)
e
Eq. (20)

NuD [9] NuD

Eq. (24)
e Eq.
(20)

5E–07 154.26 155.3 0.670 232.76 232.9 0.076
1E–06 122.93 123.3 0.267 184.55 184.9 0.180
2E–06 97.538 97.83 0.303 146.42 146.7 0.221
5E–06 71.830 72.09 0.366 107.83 108.1 0.275
0.00001 56.999 57.23 0.408 85.557 85.83 0.316
0.00002 45.245 45.44 0.437 67.890 68.13 0.357
0.00005 33.379 33.52 0.430 50.027 50.22 0.394
0.0001 26.560 26.66 0.377 39.736 39.90 0.400
0.0002 21.188 21.24 0.268 31.598 31.72 0.372
0.0005 15.830 15.84 0.064 23.416 23.48 0.278
0.001 12.822 12.82 �0.033 18.752 18.79 0.179
0.002 10.545 10.55 0.101 15.125 15.14 0.124
0.005 8.5167 8.580 0.742 11.623 11.66 0.303
0.01 7.7405 7.775 0.450 9.8249 9.875 0.515
0.02 7.5495 7.541 -0.117 8.7133 8.731 0.204
0.05 7.5407 7.541 0.000 8.0103 8.019 0.110
0.10 7.5407 7.541 0.000 7.7755 7.780 0.058
0.20 7.5407 7.541 0.000 7.6581 7.660 0.031
0.50 7.5407 7.541 0.000 7.5877 7.589 0.014
1.00 7.5407 7.541 0.000 7.5642 7.565 0.009
This deviation at small x is negligible for parallel plate
channels, but become relatively large for other ducts.
Fig. 2 compares this solution at a broad range of x̂ values
with the exact series solution. One can observe that these
two solution agree well when x̂ is small.

In general, available heat transfer data in the literature,
for laminar internal flow, emphasize near thermally fully-
developed conditions; the available Nusselt number correla-
tions confirm this trend. To have accurate heat transfer data
extending to x̂ ¼ 0, a correlation for the local Nusselt num-
ber is proposed that emphasizes this small-x solution as

NuD ¼
hDh

k
¼ 3:106

ðx̂Þ1=3
þ 7:541

1þ 112ðx̂Þ�0:9
=125

h i3=4

for 0 6 x̂ 6 0:25 ¼ 7:541 for 0:25 < x̂ <1 ð21Þ
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Fig. 2. A comparison of the Nusselt numbers from small-x solution, this
new correlation, Eq. (21), and the exact series solution for laminar flow
through parallel-plate channels.



Table 2
Comparison of data from Eqs. (27) and (29) with the exact series solutions
of local and average Nusselt numbers for flow through circular pipes

x̂ða=DhÞ2 NuD [9] NuD

Eq. (27)
e
Eq. (20)

NuD [9] NuD

Eq. (29)
e
Eq. (20)

5E–07 129.74 134.5 3.692 204.34 202.4 �0.976
1E–06 106.08 106.5 0.443 160.47 160.4 �0.059
2E–06 84.334 84.35 0.024 127.05 127.1 0.013
5E–06 61.877 61.88 0.008 93.334 93.34 0.012
0.00001 48.914 48.91 �0.004 73.869 73.87 0.009
0.00002 38.637 38.63 �0.028 58.429 58.43 0.000
0.00005 28.254 28.23 �0.085 42.812 42.80 �0.024
0.0001 22.279 22.24 �0.157 33.810 33.79 �0.059
0.0002 17.559 17.52 �0.245 26.683 26.65 �0.111
0.0005 12.824 12.77 �0.413 19.501 19.46 �0.217
0.001 10.130 10.08 �0.533 15.384 15.34 �0.310
0.002 8.0362 7.989 �0.589 12.152 12.10 �0.411
0.005 6.0015 5.979 �0.373 8.9432 8.903 �0.453
0.01 4.9161 4.924 0.153 7.1552 7.132 �0.326
0.02 4.1724 4.206 0.805 5.8146 5.815 0.002
0.05 3.7100 3.710 0.011 4.6406 4.655 0.302
0.10 3.6581 3.657 �0.036 4.1556 4.159 �0.104
0.20 3.6568 3.657 0.000 3.9063 3.908 0.231
0.50 3.6568 3.657 0.000 3.7566 3.757 3.279
1.00 3.6568 3.657 0.000 3.7067 3.707 5.874
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This equation is prepared so that the second term would
vanish as x̂ goes toward zero; therefore, it would not alter
the solution given by Eqs. (19a) and (19b) for this condi-
tion. Moreover, the second term approaches the thermally
fully-developed solution as x̂ become large. The solid line
with circular symbols in Fig. 1 is the corresponding devia-
tion when the Nusselt number from this correlation, Eq.
(21), replaces that for the small-x solution ðNuDÞS in Eq.
(20). Fig. 2 compares these local Nusselt number values
from Eqs. (19b) and (21) with those from [9] and the figure
indicates graphically indistinguishable differences between
this correlation, Eq. (21), and that from the exact series
solution [9]. The dash line with circular symbol represents
the small-x solution in this figure and, as expected, it agrees
well with other data at small values of x̂ and it only deviates
as x̂ becomes larger than 0.01.

Table 1 also presents a sample of data comparing those
from Eq. (21) with Column 2 taken from [9]. The deviation
e is generally better than the targeted accuracy of less than
1%. Next, the average Nusselt number NuD ¼ �hDh=k is
determined from the equation

NuD ¼
1

x̂

Z x̂

0

NuD dx̂ ð22Þ

Following the substitution of NuD from Eq. (21) into Eq.
(22), the integration yields

NuD ¼
4:6587

x̂1=3
þ 2:2553x̂�0:9

ð125þ 112x�0:9Þ3=4

�
�

112þ 125x̂0:9 � 2:2795ð112þ 125x̂0:9Þ3=4

�2F 1

31

36
;
3

4
;
67

36
;� 125

112
x̂0:9

	 
�
when 0 6 x̂ 6 0:25

ð23aÞ

and

NuD ¼ 7:541þ 0:381=x̂ when 0:25 < x̂ <1: ð23bÞ

The hypergeometric function 2F1 within Eq. (23a) is
defined in [6, p. 556]. Table 2 also includes the percent
deviation using Eqs. (23a) and (23b) and the data from
[9]. It is simpler to use approximate forms of Eqs. (23a)
and (23b); with less than 0.6% deviation, they are

NuD ¼
4:6587

x̂1=3
þ 7:541

1þ 1:32x̂�0:7
when 0 6 x̂ 6 0:25

¼ 7:541þ 0:381

x̂
when 0:25 < x̂ <1 ð24Þ

A comparison between the data using Eq. (24) and those
from [9] are also in Fig. 2 and the percent deviation is plot-
ted in Fig. 1.

Next, it is desirable to extend this methodology to
include passages with different shapes. An excellent candi-
date for this investigation is the study of heat transfer in
circular passages. Also included in this study are the com-
monly-used geometries of rectangular passages.
2.2. Application to circular pipes

Using the above Airy equation analysis, Nusselt num-
bers for laminar flow through circular pipes are derived
in this section. For hydrodynamically fully-developed flow
through circular pipes with radius ro, the velocity function
after transforming the radial coordinate r by the relation
y ¼ ro � r is

u
U
¼ 2 2

y
ro

� �
� y

ro

� �2
" #

ð25aÞ

with velocity slope at the wall

du
dy

����
y¼0

¼ 4
U
ro

ð25bÞ

and therefore, C ¼ 4U=ro. According to Eq. (14b), the
small x-solution for laminar and hydrodynamically fully-
developed flow through circular ducts yields

NuD ¼
1:709

ðx̂Þ1=3
: ð26aÞ

with x̂ ¼ ðx=roÞ=ðUro=aÞ. The deviation of this equation
from the exact series solution [9] is plotted in Fig. 3, using
dash lines with diamond shaped symbols. Although at very
small values of x̂ the error is relatively small, it begins to in-
crease and then decrease as x̂ increases. It is likely that the
curvature effect begins to influence the velocity field as x̂ in-
creases. Assuming ðx̂Þ1=3 represents the first term in the
Taylor series expansion of the temperature penetration;
the next higher term must have the form ðx̂Þ2=3

=2! to be
multiplied by an empirical factor of 4/3. Therefore, the
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Fig. 3. Percent deviations for near entrance solutions, Eqs. (26a) and
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function of x̂ for flow in circular pipes.
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Nusselt number at small x values, is obtainable from the
relation

NuD ¼
1:709

ðx̂Þ1=3 þ 2
3
ðx̂Þ2=3

; ð26bÞ

and it is to be examined. The data presented, in Fig. 3 by
dot dash with triangular symbols show acceptable behav-
iors. Assuming Eq. (26b) to represent the solution at small
values of x̂, a correlation is prepared for the Nusselt num-
ber that emphasizes the small-x solution for the intermedi-
ate values of x̂, it is

NuD ¼
hDh

k

¼ 1:709

ðx̂Þ1=3 þ 2
3
ðx̂Þ2=3

þ 3:657

ð1þ 1:86x̂�3=2Þ4=15
when 0 6 x̂ 6 0:25

¼ 3:657 when 0:25 < x̂ <1 ð27Þ
The data in Fig. 3 show that the deviation between data
from Eq. (27) and those from [9] is within the targeted
accuracy of less than 1%. As before, Table 2 is prepared
to show a sample of acquired data and their comparison
with those from [9]. Also, the substitution of NuD from
Eq. (27) in Eq. (22) provides the average Nusselt number
NuD ¼ �hDh=k. Following the substitution, the resulting
relation has an exact integral form

NuD ¼ 7:6905
1

x̂2=3
� 3 lnð1þ 2x̂1=3=3Þ

2x̂

	 

þ 2:61214

ð1þ 93x�3=2=50Þ4=15

� 1þ 50x̂3=2
� �4=15 � 2F 1

14

15
;

4

15
;
29

15
;� 50

93

� �
x̂3=2

	 
� �

when 0 6 x̂ 6 0:25 ð28aÞ

and

NuD ¼ 3:657þ 0:2008

x̂
when 0:25 < x̂ <1 ð28bÞ
However, a simpler approximation with a comparable
accuracy of less than 1% is

NuD ¼
3:657

ð1þ 1:02x̂�0:52Þ0:95
þ 7:691

x̂2=3
� 11:536

x̂
lnð1þ 2x̂1=3=3Þ

when 0 6 x̂ 6 0:25

¼ 3:657þ 0:2008

x̂
when 0:25 < x̂ <1 ð29Þ

Fig. 4 compares the dot dash lines representing Eq. (29)
with that from the exact series solution. The deviation be-
tween these two sets of data are graphically indistinguish-
able. Fig. 3 shows the deviation over the entire range of
data from 0 to 1 with deviations of less than 0.6%.
2.3. Application to rectangular ducts

The application of this small-x solution to rectangular
passages is an important example, which can provide
insight for extending the analysis to other applications.
See Fig. 5 for the geometry of the cross-section with the
width of 2a in the y-direction and 2b in the z-direction.
In this problem, all the variables cannot be separated and
the acquisition of an accurate exact solution at small values
of x can be difficult. However, the small-x analysis in this
paper is relatively straightforward, simple and accurate.
As in the previous cases, in the small-x region, only the thin
film next to the walls is relevant. The films near
y ¼ �a and z ¼ �b are considered separately. Consider
the surface at y ¼ a. In the thin film near this surface, the
velocity gradient is nearly linear in the y-direction and is
modeled using CyðzÞ because it varies in the z-direction.
Likewise, at the z ¼ b surface, the velocity gradient is
CzðyÞ. Consequently, the complex 3D heat transfer prob-
lem in the x-, y- and z-directions is reduced to two simpler
2D problems; one of these is for the y ¼ �a surfaces which
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b

0

z

y-a
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Fig. 5. Coordinates locations and dimensions for rectangular ducts.
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is modeled as a partial differential equation in the y- and x-
directions and the other is for the z ¼ �b surfaces which
has a partial differential equation involving the z- and x-
directions.

The 3D energy equation for hydrodynamically fully-
developed flow and in the absence of axial conduction is

o2h
o�y2
þ o2h

o�z2
¼ u

U

� � oh
ox̂

ð30aÞ

The solution of Eq. (30a) when h ¼ 1 at the walls and h ¼ 0
when x̂ ¼ 0 is given in [10]. This solution is obtained for rel-
atively large x-values using the Green’s function solution
method in [11]. The computed series solution data [10], in
Fig. 6, behaves well when x̂ > 10�3 and they begin to fluc-
tuate at the lower values of x̂, as expected.

In the present analysis, the thin film normal to wall con-
dition allows Eq. (30a) to be broken into the two different
problems

o
2h

o�y2
¼ CyðzÞa

U
�y
oh
ox̂

ð30bÞ

and

o
2h

o�z2
¼ CzðyÞb

U
�z
oh
ox̂

ð30cÞ

Although the gradient CyðzÞ is a function of z in Eq. (30b),
the velocity varies much less in the z-direction in the film
than it does in the y-direction. Hence, its dependence can
be neglected in the solution, as is demonstrated in the cor-
relations given below.

For a rectangular duct, shown in Fig. 5, the average
velocity gradient is needed on the walls. Because u=U
depends on �y ¼ y=a and �z ¼ z=a, the exact series solution
[10] is

u
U
¼ 2�b

p

P1
n¼1F nðzÞ cosðbny=aÞP1

n¼1
bn

�b�tanhðbn
�bÞ

b5
n

ð31aÞ

with bn ¼ ðn� 1=2Þp
F nðzÞ ¼
ð�1Þn�1

ð2n� 1Þb2
n

1� coshðbnz=aÞ
coshðbn

�bÞ

	 

ð31bÞ

and

U ¼ 8a2

p2l
�op
ox

� �X1
n¼1

bn
�b� tanhðbn

�bÞ
ð2n� 1Þ2�bb3

n

ð31cÞ

where p is the mean pressure at a given x location.
Now, one needs to differentiate Eq. (31a) with respect to

y and evaluate it at y ¼ �a to obtain

CyðzÞ ¼
ou
oy

����
y¼�a

¼ U
2�b
pa

P1
n¼1F nðzÞbn sinðbnÞP1

n¼1
bn

�b�tanhðbn
�bÞ

b5
n

ð32aÞ

Similarly, one can differentiate Eq. (31a) with respect to z

and evaluate it at z ¼ �b to get

CzðyÞ ¼
ou
oz

����
z¼�b

¼ U
2�b
p

P1
n¼1

ð�1Þn tanhðbn
�bÞ cosðbny=aÞ

ð2n�1Þb2
naP1

n¼1
bn

�b�tanhðbn
�bÞ

b5
n

ð32bÞ

Following the substitution of CyðzÞ from Eq. (32a) in Eq.
(14b), it is to be integrated from z ¼ �b to b. This proce-
dure is repeated after the substituting of CzðyÞ from Eq.
(32b) in Eq. (14b) and integrating the resulting equation
from y ¼ �a to a. The summation of these two quantities
is divided 2aþ 2b to get the average heat flux; that is,

qavðxÞ ¼ �
1

2aþ 2b

Z b

�b

kðT w � T iÞ
Cð2=3Þ

Ai0ð0Þ
Aið0Þ

CyðzÞ
ax

� �1=3

dz

(

þ
Z a

�a

kðT w � T iÞ
Cð2=3Þ

Ai0ð0Þ
Aið0Þ

CzðyÞ
ax

� �1=3

dy

)
ð33Þ

However, due to symmetry conditions, this equation
becomes

qavðxÞ ¼ �
1

aþ b
kðT w � T iÞ

Cð2=3Þ
Ai0ð0Þ
Aið0Þ

U
aax

� �1=3

�
Z b

0

½aCyðzÞ=U �1=3 dzþ
Z a

0

½aCzðyÞ=U �1=3 dy
� �

ð34Þ

This definition of average heat flux introduces an equiva-
lent C,

ðCÞ1=3 ¼ 1

aþ b

Z b

0

½aCyðzÞ=U �1=3 dz
�

þ
Z a

0

½aCzðyÞ=U �1=3 dy
�
;

ð35Þ

that is needed for the computation of local heat transfer
coefficient at any small x̂ location from Eq. (14b); that is,

hDh

k
¼ � Dh

a

� �
ðCÞ1=3

Cð2=3Þ
Ai0ð0Þ
Aið0Þ

Ua2

ax

� �1=3
1

1� hb

ð36Þ

Near the entrance location, hb in Eq. (36) becomes negligi-
ble and can be removes from Eq. (36).

Table 3 shows the values of C for rectangular ducts with
different aspect ratios �b ¼ b=a, for prescribed temperature



Table 3
Effective values of C, Eq. (34), for rectangular ducts and prediction of NuD

at x̂ ¼ 0:001:

b=a aCy(0)/U aCz(0)/U C NuD
�,

Eq. (36)
NuD

�,
Eq. (37)

1 4.804 4.804 3.325 16.07 15.01
1.2 4.567 4.250 3.069 17.07 16.06
1.5 4.329 3.719 2.866 18.35 17.40
2 4.067 3.233 2.731 20.07 19.20
3 3.742 2.819 2.689 22.46 21.69
4 3.550 2.644 2.711 24.02 23.31
5 3.430 2.549 2.739 25.11 24.44
6 3.352 2.489 2.766 25.91 25.27
7 3.297 2.448 2.788 26.52 25.90
8 3.256 2.418 2.807 27.00 26.40
9 3.226 2.395 2.823 27.39 26.80

10 3.202 2.377 2.837 27.71 27.15
15 3.132 2.325 2.883 28.73 28.20
20 3.098 2.300 2.909 29.28 28.76

� When x̂ ¼ 0:001.
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Fig. 6. A comparison between the small-x solutions, Eqs. (36) and (37),
and the large-x solution, by the weighted residual method [10], for flow
through rectangular ducts.
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at the boundary. Also, for comparison, it includes the val-
ues of aCyð0Þ=U and aCzð0Þ=U . As expected, for ducts
with large aspect ratios, aCyð0Þ=U approaches 3 as given
by Eq. (16) for parallel plate ducts. Using the data in
[10], when x̂ ¼ 0:001, the Nusselt number NuD ¼ hDh=k val-
ues are 15.08, 18.92, and 26.37 when �b ¼ 1; 2; and 10,
respectively. For comparison, the corresponding values,
using Eq. (36) with hb ¼ 0, are NuD ¼ 16:07, 20.07, and
27.37. Using a modified form of Eq. (36), the computed
Nusselt numbers are NuD ¼ 15:01, 19.20, and 27.14
obtained from the equation

hDh

k
¼ Dh

2a

� �
1:0767ðCÞ1=3

ðx̂Þ1=3½1þ cðx̂Þ1=3�
ð37Þ

The parameter c is computed using a simple interpolation;
that is

c ¼ 0:151þ 0:58
�b

ð38Þ

The empirically determined values of c are between those
for the parallel plate channels and circular pipes. As
b=a!1, the parameter approaches 0.151. Also, when
b=a ¼ 1, the value of c should be �0.731 due to curvature
effect within the temperature solution, similar to that for
the circular pipe in Eq. (26b). For other aspect ratios, the
Nusselt number when x̂ ¼ 0:001 are also listed in Table 3.
A comparison of these two sets of data indicates a small
but significant improvement in the accuracy.

Fig. 6 shows the general behaviors of these solutions for
rectangular ducts where hDh=k is plotted as a function of
ðx=aÞ=ðUa=aÞ ¼ ðx=aÞ=Pe for different b=a values. The solid
lines represent the computed data using Eq. (36). These are
compared with the dash lines with circular symbols for the
large-x solution; obtained using the extended weighted
method in [10,11]. The data behavior is similar to those
for the parallel plate channels and circular pipes. Further-
more, the study of expected improvement using Eq. (37) is
an interesting feature of this small-x solution. The dot-dash
lines in Fig. 6 are the solution using Eq. (37) and indeed
they improved the accuracy of the small-x solution when
b=a is small, as can be seen for b=a ¼ 1 and 2. However,
this figure shows that the effect of c parameter, for
b=a ¼ 10, becomes relatively small, as was observed for
parallel plate channels. Fig. 6 shows that the large-x solu-
tions agree well with the solutions using Eq. (37) in the
neighborhood of x̂ ¼ 10�3. At the larger x̂ values, the
small-x solutions begin to deviate, as expected. However,
when x̂ < 10�3, the large-x solutions show fluctuations
due to the convergence characteristic of the series solution.
This significant because it indicates a need for a relatively
accurate solution as x̂ becomes very small. Another point
is the current Airy analysis again provides the simple
dependence on the entrance distance (for small values) of
x to the �1/3 power.

The form of Eq. (37) is similar that for cylinder, Eq.
(26b). However, the parameter c in Eq. (37) changes as
b=a changes. It is possible to use a similar procedure to
acquire a correlation for determining the heat transfer coef-
ficient in rectangular ducts with uniform wall temperatures.
The following relation produces reasonably accurate but
with larger errors than those for parallel plate channels
and circular pipes

NuD ¼
hDh

k
¼ Dh

2a

� �
1:0767ðCÞ1=3

ðx̂Þ1=3½1þ cðx̂Þ1=3�
þ 0:75ðNuDÞFD

1þ wx̂�3=2ð Þ1=3

when 0 6 x̂ða=DhÞ 6 0:3

¼ ðNuDÞFD when 0:3 < x̂a=Dh <1 ð39aÞ

where

w ¼ ð5þ
�bÞð1� cÞ

bð4þ bÞc4=3
ð39bÞ
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and ðNuDÞFD is the Nusselt number for thermally fully-
developed flow and it is presented in Table 4. Also, Table
4 contains the parameter w. Fig. 7 compares the Nusselt
number values from Eq. (39a) with those from a large-x
series solution, obtained using the technique in [10]. Both
solutions agree well at the midrange but the series begins
to show the sign of instability when ðx=aÞ=ðReDPrÞ is less
than 10�3.

The form of Eq. (39a) and the constant w are selected so
that one can determine the average Nusselt number analyt-
ically since

I1 ¼
Z x̂

0

Dh

2a

� �
1:0767ðCÞ1=3

ðx̂Þ1=3½1þ cðx̂Þ1=3�

¼ Dh

2a

� �
3:23ðCÞ1=3

c2
cðx̂Þ1=3 � ln½1þ cðx̂Þ1=3�
n o

ð40aÞ

I2 ¼
Z x̂

0

0:75ðNuDÞFD

1þ wx̂�3=2ð Þ1=3
dx̂

¼ 0:75ðNuDÞFD ðwþ x̂3=2Þ2=3 � w2=3
h i

ð40bÞ

and then
Table 4
Parameters in the Nusselt number correlations for rectangular ducts

b=a ðNuDÞFD c, Eq. (38) w, Eq. (39b) x, Eq. (40d)

1.0 2.978 0.731 0.490 0.220
1.2 3.007 0.634 0.667 0.278
1.5 3.123 0.538 0.833 0.357
2 3.392 0.441 0.971 0.446
3 3.958 0.344 1.035 0.518
4 4.441 0.296 1.004 0.531
5 4.828 0.267 0.947 0.532
6 5.138 0.248 0.887 0.535
7 5.389 0.234 0.829 0.542
8 5.594 0.223 0.775 0.554
9 5.764 0.215 0.727 0.571

10 5.908 0.209 0.633 0.590
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Fig. 7. A comparison of a small-x based new correlation, Eqs. (39a) and
(39b), and exact large-x solution, as given in [10,11].
NuDðx̂Þ ¼
1

x̂
½I1ðx̂Þ þ I2ðx̂Þ� when 0 6 x̂ 6 0:3ðDh=aÞ

¼ ðNuDÞFD þ
x
x̂

when 0:3ðDh=aÞ < x̂ <1

ð40cÞ

wherein x is the value of

x ¼ NuDðx̂Þ
��
x̂¼0:25ðDh=aÞ � ðNuDÞFD

h i
� 0:3ðDh=aÞ ð40dÞ

and its numerical values for different aspect ratios are in
Table 4.

3. Discussion

As the entrance distance x becomes very small, the series
solutions [10,11] for the temperature converge very slowly
indeed. For example, for a Graetz type solution, over 500
eigenvalues may be needed at extreme accuracy for the
determination of eigenfunctions. However, as x becomes
small, the physical problem changes and permits an alter-
native and complementary analysis. As the series solution
becomes more difficult and less accurate, this alternative
solution becomes more accurate. Moreover, this paper
shows that the dependence of h upon x for small dimen-
sionless values is to the �1/3 power for a variety of
cross-sections.

A combination of the small-x solution and large-x solu-
tion can serve as a useful tool to get accurate heat transfer
data over the entire length of a duct. The methodology pre-
sented in the earlier sections was for the step change in the
wall temperature. This type of solution can be extended to
include other boundary conditions. For the case of con-
stant heat flux the parallel plate channels are the primary
candidates for illustrating the mathematical procedure.
This is achievable by solving the Airy differential equation,
Eq. (8), with prescribed heat flux at the wall, instead of
temperature.

The solution procedure is similar to that for constant
wall temperature case. Minor changes are needed such as
having a new definition for dimensionless temperature

Uðx; yÞ ¼ T ðx; yÞ � T i

qwa=k
; ð41aÞ

and the wall condition

�k
oT
oy

����
y¼0

¼ qw: ð41bÞ

Following the application of Laplace transform and utili-
zation of Eq. (6), Eq. (8) takes the following form

o2 �UðgÞ
og2

¼ g�UðgÞ ð42aÞ

with the boundary conditions

d�U
dg

����
g¼0

¼ � 1

s4=3

a

Ca3

� �1=3

and �Uð1Þ ¼ 0 ð42bÞ
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Since �Uð1Þ ¼ 0, the solution is �Uðs; gÞ ¼ C1AiðgÞ and the
second boundary condition yields the value of C1,
therefore,

�Uðs; gÞ ¼ � 1

s4=3

a

Ca3

� �1=3 AiðgÞ
Ai0ð0Þ ð43Þ

At the wall, g ¼ 0 and the inverse Laplace transform yields
the wall temperature

Uðx; 0Þ ¼ � 1

Cð4=3�
ax

Ca3

� �1=3 Aið0Þ
Ai0ð0Þ ¼ 1:5361

ax

Ca3

� �1=3

ð44Þ

and when C ¼ 3, it becomes Uðx̂; 0Þ ¼ 1:0651ðx̂Þ1=3. Finally,
the heat transfer coefficient is

hð2aÞ
k
¼ 2

Uðx; 0Þ ¼
2

1:0651ðx̂Þ�1=3
¼ 1:878

ðx̂Þ�1=3
ð45Þ

which can be compared with Eq. (19a). Again, it has the
same functional form.

An alternative method is to account for the wall temper-
ature change using the Duhamel’s theorem

T � T i ¼
Z x̂

n¼0

dT wðnÞ
d�x

� �
hð�y;�x� nÞdn ð46Þ

where h represents a temperature field following a wall
temperature change equal to 1. Since the bulk temperature
value is T b � T i ¼ ðqwa=kÞx̂ and using Uw ¼ ðT w � T iÞ=
ðqwa=kÞ, then,

x̂ ¼
Z x̂

n¼0

dUwðnÞ
dn

� �
Hðx̂� nÞdn ð47aÞ

where

Hðx̂� nÞ ¼
Z 1

0

u
U

� �
hð�y; x̂� nÞ d�y ð47bÞ

has the value of Hðx� nÞ ffi Cd2
t ðx� nÞ=10 with

dt ffi ð22:5x̂=CÞ1=3 when using boundary layer analysis.
The solution of Eq. (47a) following a standard Laplace
transform procedure is

Uwðx̂Þ ¼
2

3

� �5=3 ð15=CÞ1=3x̂1=3

Cð5=3ÞCð4=3Þ ¼ 1:5565
x̂

C

� �1=3

ð48Þ

For parallel plate channels, C ¼ 3 and Uwðx̂Þ ¼ 1:0792x̂1=3;
the coefficient 1.0792 compares well with 1.0651 obtained
from Eq. (44), with a factor or 1.013 as before. For
x̂ ¼ 10�5; 10�4; 10�3; and 10�2, Eq. (44) provides the Nus-
selt numbers ha=k ¼ 1=½Uwðx̂Þ � x̂� ¼ 43:58, 20.23, 9.389,
4.358, at x̂ ¼ 10�5; 10�4; 10�3; and 10�2, respectively. A
large-x solution yields the corresponding values, ha=k ¼
44:08, 20.19, 9.386, and 4.455, indicating deviations of
1.1%, 0.19%, 0.03%, 2.2%. As expected, the deviation is
small at the midrange while, at x̂ ¼ 0:01, the deviation be-
comes large because it is near the range of validity of the
small-x solution. The larger deviation at x̂ ¼ 10�5 is caused
by the numerical errors in large-x solution. Similarly, using
Eq. (48), one obtains ha=k ¼ 43:03, 20.00, 9.353, and 4.494
at x̂ ¼ 10�5; 10�4; 10�3; and 10�2 with respective errors of
2.4%, 0.95%, 0.35%, and 3.2%. This attests to the combined
effects of the small-x and large-xsolution as they can pro-
vide accurate data over the entire length of a duct.

4. Conclusions

An exact asymptotic solution is developed mainly to
evaluate the heat transfer coefficient at very small distances
from the thermal entrance location in a flow passage. It is
demonstrated that this solution can be used to verify the
accuracy of large-x solution as x reduces, as can be seen
by examining the large-x solution in Fig. 6. Accurate ana-
lytical results at all values of x, from zero to infinity, with
deviations of well below 1% are attainable for parallel plate
channels, Fig. 2, and for circular pipes, Fig. 4. Modifica-
tions are also presented to extend this methodology to
other passages, e.g., using rectangular ducts.

A very important point is that this method of solution
for small x is general because it leads to simplified solutions
for many cross-sectional shapes including flow in flat
plates, rectangles, cylinders, annuli and others. By having
this method of solution, many heat transfer problems of
this type can be readily treated. Furthermore, considerable
insight is obtained into the heat transfer in inlet regions. As
an illustration, this analysis produced a simple analytical
form that indicates the heat transfer coefficient h being pro-
portional to x�1/3 as x goes to zero while the series solu-
tions do not show this behavior. Another significant
point is that the solution for small x is complementary to
series solution, because, it is valid just where the series solu-
tion begins to falter. In the region where both solutions are
accurate, intrinsic verification [12] is possible. Having two
solutions that provide about the same numerical values,
but yet are completely different and independent, provides
considerable confidence in both solutions.
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